Selective C-C coupling reaction of dimethylphenol to tetramethyldiphenoquinone using molecular oxygen catalyzed by Cu complexes immobilized in nanospaces of structurally-ordered materials.

نویسندگان

  • Zen Maeno
  • Takato Mitsudome
  • Tomoo Mizugaki
  • Koichiro Jitsukawa
  • Kiyotomi Kaneda
چکیده

Two high-performance Cu catalysts were successfully developed by immobilization of Cu ions in the nanospaces of poly(propylene imine) (PPI) dendrimer and magadiite for the selective C-C coupling of 2,6-dimethylphenol (DMP) to 3,3',5,5'-tetramethyldiphenoquinone (DPQ) with O2 as a green oxidant. The PPI dendrimer encapsulated Cu ions in the internal nanovoids to form adjacent Cu species, which exhibited significantly high catalytic activity for the regioselective coupling reaction of DMP compared to previously reported enzyme and metal complex catalysts. The magadiite-immobilized Cu complex acted as a selective heterogeneous catalyst for the oxidative C-C coupling of DMP to DPQ. This heterogeneous catalyst was recoverable from the reaction mixture by simple filtration, reusable without loss of efficiency, and applicable to a continuous flow reactor system. Detailed characterization using ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), electronic spin resonance (ESR), and X-ray absorption fine structure (XAFS) spectroscopies and the reaction mechanism investigation revealed that the high catalytic performances of these Cu catalysts were ascribed to the adjacent Cu species generated within the nanospaces of the PPI dendrimer and magadiite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Metal Ion Uptake Studies of Silica Gel-Immobilized Schiff Base Derivatives and Catalytic Behaviors of their Cu(II) Complexes

New silica supported Schiff base ligands were prepared by the condensation reaction of 4,6-diacetylresorcinol with silica-gel derivatives, which modified with 3-aminopropyltriethoxysilane and N-(2-aminoethyl) -3-aminopropyltrimethoxysilane. Metal ion uptake capacities of these compounds were studied towards of selected transition metal (Cd(II), Cu(II), Co(II), Mn(II), Pb(II) and Ni(II)) cations...

متن کامل

Palladium nanoparticles immobilized on multifunctional ‎hyperbranched polyglycerol-grafted magnetic nanoparticles as a ‎sustainable and efficient catalyst for C-C coupling reactions

This study offers an exclusive class of magnetic nanoparticles supported hyperbranched polyglycerol (MNP/HPG) that was functionalized with citric acid (MNP/HPG-CA) as a host immobilization of palladium nanoparticles. The MNP/HPG-CA/Pd catalyst was fully characterized using some different techniques such as thermogravimetric analysis (TGA), x-ray diffraction (XRD), transmission electron microsco...

متن کامل

Application of dimeric and monomeric ortho-palladated complexes as an efficient catalysts for Heck cross-coupling reaction

The catalytic acvtivity of dimeric and monomeric ortho-palladated complexes [Pd{C6H2(CH2NH2-(OMe)2,3,4}(µ-Cl)]2)2) and [Pd{C6H2(CH2NH2-(OMe)2,3,4}Cl(PPh3)](3), was investigated in Heck cross-coupling reaction. These complexes are more active and efficient catalysts for Heck cross-coupling reaction. The palladium complexes 2 and 3 is employed in the Heck cross-coupling reaction between styrene a...

متن کامل

Citronellyl Butyrate Synthesis in Non-Conventional Media Using Packed-Bed Immobilized Candida Rugosa Lipase Reactor

The synthesis of citronellyl butyrate by direct esterification reaction catalyzed by immobilized lipase from Candida rugosa was studied in a continuous packed bed reactor using n-hexane as organic solvent. Parameters such as residence time, temperature, and pH were examined. The optimum conversion was obtained at a flow rate of 1 ml/min (residence time 8 min), temperature of 50 °C, and pH 7.5. ...

متن کامل

Oxidation of benzylic alcohols with molecular oxygen catalyzed by Cu3/2[PMo12O40]/SiO2

The aerobic oxidation of alcohols was efficiently completed in high conversion and selectivity using Cu3/2[PMo12O40]/SiO2 as catalyst under mild reaction condition. This reaction provides a new environmentally friendly rout to the conversion of alcoholic function to carbonyl groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2015